
An initial evaluation of ROP-based

JIT-compilation

Pablo Bravo1, Francisco Ortin2
1Malwarebytes Corp., Anti-Exploit Technologies, EEUU
2University of Oviedo, Computer Science Department, Spain

Abstract

Return-oriented programming (ROP) is a security exploit technique that allows

an attacker to execute code in the presence of security defences. By modifying

the contents of the runtime stack, the program control flow can be changed to

execute specific machine sequences called gadgets. This new way of thinking

about program flow may be useful for improving the runtime performance of

specific language features such as structural reflection, dynamic code evaluation,

and function composition. This article presents an initial evaluation of ROP as a

JIT-compilation technique. We compare runtime performance, memory con-

sumption and compilation time of four different back-ends, including ROP, of a

simple stack-based virtual machine.

Keywords: Return-oriented programming, JIT compilation, runtime perfor-

mance, memory consumption, stack-based virtual machine

1 Introduction

Return Oriented Programming (ROP) is a security exploit technique that allows

the attacker to execute code in presence of Data Execution Prevention (DEP) [1].

Essentially, ROP is based on the idea that all the code a program needs to run

could be found inside any other process. The organizational code unit in ROP is

a gadget, a sequence of instructions ending in a ret instruction. With the control

of the runtime stack, addresses of gadgets can be pushed and the execution path

will flow through the gadgets code [2]. A successful attack can be composed

based on code that already lives inside the attacked process.

Although ROP has mostly been used for software attacks, it represents a new

way of thinking about program flow. Any program can be codified with a mini-

mum fixed-length set of gadgets [10]. Then, programs are executed as a se-

quence of invocations to these gadgets. These invocations are performed by

pushing the correct memory addresses of the gadgets to be called. Therefore,

programs are codified as data, and pushed onto the stack.

The idea of identifying programs as modifiable data is widely used in dynam-

ic languages such as Python, Ruby and JavaScript [6]. Meta-programming ser-

vices such as structural reflection and dynamic code generation make use of this

idea, providing a high level of runtime adaptability. Therefore, the implementa-

tion of a ROP-based JIT-compiler for these language features may involve better

runtime performance and simplicity, since the high- and low-level languages

follow the same pattern: program representation as modifiable data.

The main contribution of this paper is an initial evaluation of the pros and

cons of ROP-based JIT compilation. For that purpose, we implement a simple

stack-based language with 4 different back-ends including a ROP JIT compiler.

Runtime performance, memory consumption and compilation time are evaluated.

2 Return-oriented programming

ROP is based on the fact that the computer stack has not actually to store the real

return addresses and arguments to chain function calls in an imperative language

model. It can store any address in the process space. The addresses of common

computation elements (gadgets) can be stored in the stack. Since each gadget

ends with a ret instruction, the values in the stack control the execution flow of

the program.

The idea of ROP may be applied for program translation. A Turing-complete

set of gadgets can be elected to run any program as a concatenation of gadgets.

The set of gadgets would behave effectively like an interpreter or virtual ma-

chine, as can be seen in Figure 1. Execution flow jumps between the different

gadgets due to two facts: gadgets end in a ret instruction, and programs are

represented as addresses in the stack. Gadgets are executed following the pro-

gram flow, obtaining the expected program behavior.

Figure 1: Program representation using gadgets.

There is a similar approach to ROP denominated Jump-Oriented Program-

ming (JOP). This variant is a replacement in architectures which lack a stack,

and demonstrates that ROP is neither tied to a stack nor a ret instruction. Jump-

Oriented Programming (JOP) is based on gadgets ending in a jump instruction,

whose address is also read from a linear structure [9]. This way, the common

stack, if any, is free to be used in any other way required except to write down

function calls to control program flow.

One thing to notice is the high locality of the executed code. Program de-

scription lies sequentially in a stack in the form of gadget addresses, but the real

code executed by the computer is a handful set of gadgets. Those gadgets can

probably be stored in few pages of memory, thus improving code locality.

3 Evaluation

3.1 Methodology

We implemented a simple language of a stack-based virtual machine taken from

a compiler construction course [8]. It contains the following instructions:

 Basic arithmetic operations performed by popping the operands off the

stack, computing the operation, and pushing result back onto the stack.

 Push constant values and variable addresses.

 Load a variable value: the variable address is popped off the top of the

stack, and its value is pushed.

 Store: given a variable address and a value on the top of the stack, both

are popped and the value is assigned to the variable.

 Output: pops the value off the stack and shows it in console.

Figure 2: Source code translations for different back-ends.

The implementation consists in a basic interpreter with four back-ends: as an

optimized interpreter, with typical JIT-compilation [4], and ROP and JOP JIT-

compilation. The three JIT-compiler approaches provide no optimization.

The implementation of the ROP/JOP back-end comprises a set of gadgets

that faithfully resembles the JIT implementation, as Figure 2 shows. In particu-

lar, the output routine and its invocation stay exactly the same among the back-

ends.

We measure execution time, memory consumption and compilation time of

some synthetic source programs containing different number of output instruc-

tions (0%, 10%, 16%, 20%, 25%, 33% and 50%). As we saw in Section 3, the

output instruction has a strong influence on the evaluation. The executed pro-

grams have increasing code sizes. The binary sizes of the JIT-compiled programs

vary in powers of two from 4KB to 1024KB.

3.2 Execution time

Figure 3 shows the execution times of the 4 different back-ends. We evaluate the

influence of program size and output instructions on the runtime performance.

The first chart in Figure 3 presents the little influence of the program size, when

no output instructions are used. We can see how the classical JIT compilation

technique provides the best performance results for every program size. The

execution time of the JIT approach is between 6.9% and 8.5% the execution time

of the interpreter version. The JOP JIT-compiler provides the second better per-

formance, requiring on average 44% more execution time than the classical JIT-

compiler approach.

Figure 3: Execution time relative to ROP.

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 16% 20% 25% 33% 50%

Percentage of output instructions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 8 16 32 64 128 256 512 1024

Generated binary code size (in KB)

Interpreter JIT ROP JOP

The ROP back-end is significantly worse than the JIT and JOP approaches,

but it is still 12.9% faster than the optimized interpreter. If we compare the two

new ROP and JOP back-ends, we can see how JOP is surprisingly 787% faster.

This difference is due to the different semantics of ret and jmp instructions.

Return instructions are designed as companions of call instructions, performing

a quite complex operation in x86 architectures compared to jump. On the other

hand, modern architectures have quite effective branch prediction hardware to

minimize the effect of jmp instructions in the pipeline of the processor.

The second chart in Figure 3 shows the important influence of output instruc-

tions. For programs with at least 10% output instructions, execution times of the

4 approaches are not statistically significant. The time consumed by output in-

structions diminishes the differences among the approaches, as the out instruc-

tion require much more execution time that the rest of instructions.

3.3 Memory consumption

We also measured the memory consumed at runtime in the execution of each

program. The size of the program had no influence on the relative values, but the

kind of compiled instructions did. Figure 4 shows the average memory consump-

tion relative to the interpreter approach. As expected, the 3 JIT-compiler ap-

proaches consume more memory than the interpreter [3]. JIT-compilers provide

better runtime performance, but also require additional memory resources.

The ROP and JOP approaches always consume the same memory resources:

twice the memory used by the interpreter version. However, the memory con-

sumption of the classical JIT-compiler depends on the program compiled. In fact,

if the number of output instructions is 50%, it consumes 46% more memory

resources than the ROP and JOP approaches (almost 3 times the memory of the

interpreter).

Figure 4: Memory consumption relative to the interpreter.

This difference between the two JIT-compilation techniques is caused by the

way both approaches generate code. ROP and JOP include a fixed collection of

gadgets in the generated code, and most instructions simply push a 4-byte value

onto the stack (Table 1). These values are memory addresses of the correspond-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0% 10% 16% 20% 25% 33% 50%

Percentage of output instructions

Interpreter

JIT

ROP

JOP

ing gadget. However, the traditional JIT-compilation is based on the generation

of a collection of binary instructions per source instruction. That is, instead of

calling a gadget, they write their body for each instruction. As Table 1 shows, the

classical JIT approach commonly requires more memory than the ROP/JOP

alternative, even for our low-level stack-based language. We think this difference

would be greater when compiling high-level languages.

Table 1: Instruction sizes in bytes.

Instruction JIT ROP/JOP

ADD 5 4
SUB 5 4
MUL 5 4
DIV 7 4
PUSH 5 8
PUSHA 7 8
LOAD 4 4
STORE 4 4
OUT 18 4

3.4 Compilation time

JIT compilation includes the binary code generation in the application execution.

Therefore, the compilation time may increase the global performance of short-

running applications, and it must be measured [5].

Figure 5: Compilation time relative to ROP.

Figure 5 shows compilation time relative to the ROP JIT-compiler. As ex-

pected, there is no significant difference between the ROP and JOP approaches,

since code generation is analogous. However, these techniques generate binary

code faster than the traditional approach. Besides, compilation time of the classi-

cal JIT compilation grows with the percentage of output instructions. The ra-

tionale is the same as for memory consumption. Since the JIT-compiler must

0

0.5

1

1.5

2

2.5

3

0% 10% 16% 20% 25% 33% 50%

Percentage of output instructions

JIT

ROP

JOP

generate more binary instructions for the output instruction (Table 1), the compi-

lation process takes longer.

4 Conclusions and future work

An initial evaluation seems to imply that the ROP-based JOP technique can be

used as an alternative mechanism for implementing JIT-compilers. JOP provides

important performance benefits compared to interpretation, and 44% more exe-

cution time than the classical JIT-compiler approach. However, its memory con-

sumption grows linearly with the number of instruction, and it is generally lower

than current JIT-compilation techniques. Finally, it requires less compilation

time than the traditional JIT-compilation.

We think that applying JOP compilation to high-level programming lan-

guages may increase the identified benefits. In these languages, the difference

between the sizes of binary code generated for high-level instructions is higher

than in a simple low-level stack-based machine. This higher difference will im-

ply lower memory consumption and faster compilation of the JOP approach.

We are currently working on the JOP/ROP compilation of a high-level lan-

guage to improve our evaluation. We think that this new compilation mechanism

will improve the runtime performance of meta-programming features such as

structural reflection and dynamic code evaluation [6]. These language features

are based on the identification of code as data that can be modified, which is the

idea behind ROP. Concatenative programming is also based on the idea of com-

posing functions to create programs [7]. A common implementation of concate-

native languages is with a stack machine, so ROP/JOP JIT-compilation may be

applicable.

We also believe that execution time of JOP programs may be increased when

compiling high-level languages. Our stack language does not have any instruc-

tion related with control flow, so its pipeline in the processor is ideal. Even in

this worst-case scenario, the JOP-based JIT performed well. Thus, we think the

effect of locality may decrement the impact in performance of breaking the pipe-

line.

Acknowledgements

This work was partially funded by the Department of Science and Innovation

(Spain) under the National Program for Research, Development and Innovation:

project TIN2011-25978. We have also received funds from the Principality of

Asturias to support the Computational Reflection research group, grant

GRUPIN14-100.

References

[1] Shacham, H., The Geometry of Innocent Flesh on the Bone: Return-into-libc

without Function Calls (on the x86). Proc. 14th ACM Conference in Comput-

er and Communications Security (CCS 07), ACM, pp. 552–561, 2007.

[2] Prandini, M. & Ramilli, M., Return-Oriented Programming. IEEE Security

& Privacy, pp. 84-87, 2012.
[3] Ortin, F., Labrador, M. A. & Redondo, J. M., A hybrid class- and prototype-

based object model to support language-neutral structural intercession. In-

formation and Software Technology, Volume 56, Issue 2, pp. 199-219, 2014.

[4] Aycock, J., A brief history of just-in-time compilation. ACM Computing

Surveys (CSUR) Surveys, Volume 35 Issue 2, pp. 97-113, 2003.

[5] Georges, A., Buytaert, D., & Eeckhout, L., Statistically rigorous Java per-

formance evaluation, OOPSLA ’07, ACM, New York, NY, USA, pp. 57–76,

2007.

[6] Redondo, J. M., Ortin, F., A Comprehensive Evaluation of Widespread Py-

thon Implementations. IEEE Software, doi: 10.1109/MS.2014.104 (to be

published).

[7] Diggins, C., What is a concatenative language, 2008

http://www.drdobbs.com/architecture-and-design/what-is-a-concatenative-

language/228701299

[8] Ortin, F., Zapico, D., & Cueva, J. M., Design Patterns for Teaching Type

Checking in a Compiler Construction Course. IEEE Transactions on Educa-

tion, Volume 50, Issue 3, pp. 273-283. August 2007.

[9] Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z., Jump-oriented program-

ming: a new class of code-reuse attack. ASIACCS '11 Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security,

pp. 30-40, 2011.

[10] Homescu, A., Stewart, M., Larsen, P., & Brunthaler, S. Microgadgets: size

does matter in Turing-complete Return-oriented programming. 6th USENIX

Workshop on Offensive Technologies, Bellevue, WA, 2012.

http://www.drdobbs.com/architecture-and-design/what-is-a-concatenative-language/228701299
http://www.drdobbs.com/architecture-and-design/what-is-a-concatenative-language/228701299

